Non-Linear DSGE Models, the Central Difference Kalman Filter, and the Mean Shifted Particle Filter

CREATES Research Paper 2008-33

47 Pages Posted: 19 Jun 2008

See all articles by Martin M. Andreasen

Martin M. Andreasen

Aarhus University; CREATES, Aarhus University

Multiple version iconThere are 2 versions of this paper

Date Written: June 20, 2008

Abstract

This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second. The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported log-likelihood function.

Keywords: Multivariate Stirling interpolation, Particle filtering, Non-linear DSGE models, Non-normal shocks, Quasi-maximum likelihood

JEL Classification: C13, C15, E10, E32

Suggested Citation

Andreasen, Martin M. and Andreasen, Martin M., Non-Linear DSGE Models, the Central Difference Kalman Filter, and the Mean Shifted Particle Filter (June 20, 2008). CREATES Research Paper 2008-33, Available at SSRN: https://ssrn.com/abstract=1148079 or http://dx.doi.org/10.2139/ssrn.1148079

Martin M. Andreasen (Contact Author)

CREATES, Aarhus University ( email )

School of Economics and Management
Building 1322, Bartholins Alle 10
DK-8000 Aarhus C
Denmark

HOME PAGE: http://econ.au.dk/research/research-centres/creates/people/junior-fellows/martin-andreasen/

Aarhus University ( email )

Aarhus
Denmark

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
143
Abstract Views
954
rank
148,258
PlumX Metrics