Optimizing the Performance of Sample Mean-Variance Efficient Portfolios
42 Pages Posted: 25 Apr 2011 Last revised: 25 Jul 2012
Date Written: July 23, 2012
Abstract
We propose a comprehensive empirical strategy for optimizing the out-of-sample performance of sample mean-variance efficient portfolios. After constructing a sample objective function that accounts for the impact of estimation risk, specification errors, and transaction costs on portfolio performance, we maximize the function with respect to a set of tuning parameters to obtain plug-in estimates of the optimal portfolio weights. The methodology offers considerable flexibility in specifying objectives, constraints, and modeling techniques. Moreover, the resulting portfolios have well-behaved weights, reasonable turnover, and substantially higher Sharpe ratios and certainty-equivalent returns than benchmarks such as the 1/N portfolio and S&P 500 index.
Keywords: active management, conditioning information, estimation risk, mean-variance optimization, portfolio choice, turnover
JEL Classification: G11, G12, C11
Suggested Citation: Suggested Citation
Do you want regular updates from SSRN on Twitter?
Recommended Papers
-
Portfolio Selection and Asset Pricing Models
By Lubos Pastor
-
A Test for the Number of Factors in an Approximate Factor Model
-
Comparing Asset Pricing Models: an Investment Perspective
By Lubos Pastor and Robert F. Stambaugh
-
Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps
By Tongshu Ma and Ravi Jagannathan
-
On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model
By Louis K.c. Chan, Jason J. Karceski, ...
-
Honey, I Shrunk the Sample Covariance Matrix
By Olivier Ledoit and Michael Wolf
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Constraints and the Fundamental Law of Active Management